Subsurface Ocean Signals from an Orbiting Polarization Lidar
نویسندگان
چکیده
Detection of subsurface returns from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite were demonstrated. Despite the coarse range resolution of this aerosol lidar, evidence of subsurface scattering was observed as a delay and broadening of the cross-polarized signal relative to the co-polarized signal in the three near-surface range bins. These two effects contributed to an increased depolarization at the nominal depth of 25 m. These features were all correlated with near-surface chlorophyll concentrations. An increase in the depolarization was also seen at a depth of 50 m under certain conditions, suggesting that chlorophyll concentration at that depth could be estimated if an appropriate retrieval technique can be developed. At greater depths, the signal is dominated by the temporal response of the detectors, which was approximated by an analytical expression. The depolarization caused by aerosols in the atmosphere was calculated and eliminated as a possible artifact.
منابع مشابه
Ocean and Polarization observations from active remote sensing: Atmospheric and Ocean science applications
In the past few years, we have demonstrated how the surface return measured by the active instruments onboard CloudSat and CALIPSO could be used to retrieve the optical depth and backscatter phase function (lidar ratio) of aerosols and ice clouds. This methodology lead to the development of a data fusion product publicly available at the ICARE archive center using the Synergized Optical Depth o...
متن کاملAerosol Retrievals from CALIPSO Lidar Ocean Surface Returns
This paper describes approaches to retrieve important aerosol results from the strong lidar return signals that are received by the space-borne CALIPSO lidar system after reflecting off-ocean surfaces. Relations, from which the theoretically expected values of area under ocean surface returns can be computed, are presented. A detailed description of the lidar system response to the ocean surfac...
متن کاملSpaceborne observations of the lidar ratio of marine aerosols
Retrievals of aerosol optical depth (AOD) from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite sensor require the assumption of the extinction-to-backscatter ratio, also known as the lidar ratio. This paper evaluates a new method to calculate the lidar ratio of marine aerosols using two independent sources: the AOD from the Synergized Optical Depth of Aerosols (SODA) pro...
متن کاملRetrieval of droplet-size density distribution from multiple-field-of-view cross-polarized lidar signals: theory and experimental validation.
Multiple-field-of-view (MFOV) secondary-polarization lidar signals are used to calculate the particle-size density distribution (PSD) at the base of a cloud. At the cloud base, multiple scattering is weak and single backscattering is predominant by many orders of magnitude. Because secondary polarization is a direct measure of multiple scattering, it is therefore advantageous to use secondary p...
متن کاملPassive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: First results from EPIC/DSCOVR at Lagrange-1 point
We presented an algorithm for inferring aerosol layer height (ALH) and optical depth (AOD) over ocean surface from radiances in oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) on the Deep Space Climate Observatory (DSCOVR) orbiting at Lagrangian-1 point. The algorithm was applied to EPIC imagery of a 2 day dust outbreak over the North Atlantic Ocean. Retrieved ALH...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Remote Sensing
دوره 5 شماره
صفحات -
تاریخ انتشار 2013